Hypothesis Testing in Econometrics
نویسندگان
چکیده
This paper reviews important concepts and methods that are useful for hypothesis testing. First, we discuss the Neyman-Pearson framework. Various approaches to optimality are presented, including finite-sample and large-sample optimality. Then, some of the most important methods are summarized, as well as resampling methodology which is useful to set critical values. Finally, we consider the problem of multiple testing, which has witnessed a burgeoning literature in recent years. Along the way, we incorporate some examples that are current in the econometrics literature. While we include many problems with wellknown successful solutions, we also include open problems that are not easily handled with current technology, stemming from issues like lack of optimality or poor asymptotic approximations.
منابع مشابه
LINEAR HYPOTHESIS TESTING USING DLR METRIC
Several practical problems of hypotheses testing can be under a general linear model analysis of variance which would be examined. In analysis of variance, when the response random variable Y , has linear relationship with several random variables X, another important model as analysis of covariance can be used. In this paper, assuming that Y is fuzzy and using DLR metric, a method for testing ...
متن کاملTesting a single regression coefficient in high dimensional linear models.
In linear regression models with high dimensional data, the classical z-test (or t-test) for testing the significance of each single regression coefficient is no longer applicable. This is mainly because the number of covariates exceeds the sample size. In this paper, we propose a simple and novel alternative by introducing the Correlated Predictors Screening (CPS) method to control for predict...
متن کاملBootstrap Methods in Econometrics
Although it is common to refer to “the bootstrap,” there are actually a great many different bootstrap methods that can be used in econometrics. We emphasize the use of bootstrap methods for inference, particularly hypothesis testing, and we also discuss bootstrap confidence intervals. There are important cases in which bootstrap inference tends to be more accurate than asymptotic inference. Ho...
متن کاملNonparametric estimation and testing of fixed effects panel data models.
In this paper we consider the problem of estimating nonparametric panel data models with fixed effects. We introduce an iterative nonparametric kernel estimator. We also extend the estimation method to the case of a semiparametric partially linear fixed effects model. To determine whether a parametric, semiparametric or nonparametric model is appropriate, we propose test statistics to test betw...
متن کاملA New Method for Sperm Detection in Infertility Cure: Hypothesis Testing Based on Fuzzy Entropy Decision
In this paper, a new method is introduced for sperm detection in microscopic images for infertility treatment. In this method, firstly a hypothesis testing function is defined to separate sperms from plasma, non-sperm semen particles and noise. Then, some primary candidates are selected for sperms by watershed-based segmentation algorithm. Finally, candidates are either confirmed or rejected us...
متن کامل